

Schmitt, stepper and optical disk revision.

- 1). A portable electricity generator set has to produce a 50Hz alternating supply. The speed of the diesel engine and alternator are monitored by a rotation sensor. This is achieved by having grooves cut into the edge of the engine flywheel every 10° which are detected by a reflecto-optical switch. The signals from the rotation sensor are used by a microcomputer to control the fuel supply for the diesel engine.
 - (a) (i) The reflecto-optical switch consists of an LED and a photodiode. Draw a diagram to show their physical arrangement.

(ii)	The LED has a forward voltage of 1.9V and a maximum current of 30mA is operated from a 12V supply. Calculate a suitable value for the series resistor for the LED.	It
 (iii)	What is the purpose of the series resistor?	(2)
•••••		(1)

(2)

(b) The circuit diagram for the photodiode is shown below.

(c)

(i) 	Explain the function of the photodiode.	
(ii)	Explain the function of the op-amp	(
The	output signal from the op-amp is shown on the	e oscilloscope diagram below.
-		
(i)	If the y-sensitivity of the oscilloscope is 2V	/div, estimate the voltage change
(i) (ii)	If the y-sensitivity of the oscilloscope is 2V in the output. What is the speed of the oscilloscope time by	/div, estimate the voltage change

(1)

(d)	(i)	Explain why this signal is unsuitable to apply to the input port of a microcomputer.	
	(ii)	Two suitable interfacing sub-systems between the rotation sensor and the microcomputer are the comparator and the Schmitt trigger. Describe two significant differences between these sub-systems.	. (1)
	(iii)	Draw the circuit diagram of a suitable comparator circuit, stating suitable component values.	. (2)
	(iv)	Suggest two reasons why a comparator may be unsuitable in this application	(3) on.
			(2)

(e) The circuit below is of a Schmitt trigger that is used to interface the rotation sensor to the microcomputer. Assume that the op-amp output is either +12 V or 0 V.

(i)	Suggest a reason why a Schmitt trigger is better than a comparator in this application.	
(ii)	What is the voltage at the non-inverting input terminal of the op-amp when the output of the op-amp is high?	(1)
(iii)	What is the voltage at the non-inverting input terminal of the op-amp when the output of the op-amp is low?	(2)
•••••		
(iv)	What are the switching voltages of the Schmitt trigger?	(2)
•••••		(2)

(f) Draw a sketch on the axes below to show how the output voltage varies when the input voltage increases from 0 to 12V. Label the sketch *Increasing*.

(ii) Draw a sketch on the axes above to show how the output voltage varies when the input voltage decreases from 12 to 0V. Label the sketch *Decreasing*.

(3)

(g) The output of the Schmitt trigger is applied to the BUSY input of a Centronics port (bit D₇) and the input is *Polled*.
(i) Explain what is meant by the term polled.

` '		
•••••		•••••
(ii)	Explain how this differs from an <i>Interrupt</i> method of obtaining the information from the rotation sensor.	(2)
		(2)

(h) The QBasic statement used to read the input port is:

Explain what this statement does.

(i)

X% = INP(&H379) AND 128

.....

(2)

motor. (ii) What is the smallest angle of rotation of a 4 pole stepper motor? The stepper motor is controlled by the Centronics port of a computer. The 4 poles are to be connected via suitable driver circuits to bits D0 to D3. (i) Draw the circuit diagram of a suitable MOSFET driver circuit for one pole the stepper motor.	(ii)	What two possible values can X% have?
The stepper motor is controlled by the Centronics port of a computer. The 4 poles are to be connected via suitable driver circuits to bits D0 to D3. (i) Draw the circuit diagram of a suitable MOSFET driver circuit for one pole the stepper motor.	The f (i)	Describe two major differences between a stepper motor and a convention
are to be connected via suitable driver circuits to bits D0 to D3. (i) Draw the circuit diagram of a suitable MOSFET driver circuit for one pole the stepper motor.	 (ii)	What is the smallest angle of rotation of a 4 pole stepper motor?
(ii) Give two reasons why a MOSFET is ideally suited to this application	are to	be connected via suitable driver circuits to bits D0 to D3. Draw the circuit diagram of a suitable MOSFET driver circuit for one pole
(ii) Give two reasons why a MOSFET is ideally suited to this application		
	(ii)	Give two reasons why a MOSFET is ideally suited to this application

(k) Draw a flow diagram below to make the stepper motor rotate through an angle which is a multiple of 30° .

(")	(4)
(ii) Convert the flow diagram into a QBasic program.	
	(4)